Instructor: Dr. Behzad Alaei (Earth Science Analytics, Bergen, Norway)
Duration
1 Day
Discipline
Geophysics - Integrated Geophysics
Level
Intermediate
CPD Points
5
The course is divided into two parts: attributes review/applications and workflows. The first part starts with a review of seismic attributes and discusses the noise (random and coherent) reduction as one essential step of all attribute studies. The number of seismic attributes has recently increased dramatically causing confusion for geoscientists to select appropriate ones. In this course, trace-based attributes, volumetric dip and azimuth, fault detection and enhancement attributes, volumetric curvature, and frequency decomposition are presented using examples from different geological settings. Frequency decomposition is briefly presented with different decomposition methods such as wavelet transform, Fourier transform and matching pursuit analysis. Examples illustrate the interpretation challenges associated with frequency decomposition data interpretation. The concept of multi-attributes and geobody extraction is introduced at the end of the first part of the course with examples on combinations of amplitude, phase, discontinuity and frequency attributes to visualize different geological objects.
In the second part of the course stratigraphic and structural workflows are presented. The workflows (and the elements for their planning) aim to show the integration of several attributes for specific interpretation purposes, with examples of stratigraphic (fluvial/shallow marine clastic systems, attribute expressions of deep water turbidites and carbonate settings) and structural imaging workflows. Lastly, the course analyses the importance of the integration of seismic attribute analysis processes with the other seismic interpretation (qualitative or quantitative) workflows.
Participants should have knowledge of seismic interpretation. Mathematical concepts of attributes are presented with minimum required equations and graphic illustrations. Some basic knowledge of seismic exploration may help.
The course addresses geoscientists involved in exploration and production projects where seismic studies play a role and who wish to learn the basic theory of the main seismic attributes used in exploration and production, as well as their applications and how to integrate them in exploration and reservoir characterization studies.
He is a member of EAGE, SEG, and CSEG.